On Parametric Surfaces with Constant Mean Curvature Along Given Smarandache Curves in Lie Group
نویسندگان
چکیده
This paper finds sufficient conditions to determine a surface whose mean curvature along given Smarandache curve is constant in three-dimensional Lie group. accomplished by using the Frenet frames of specified express surfaces that span TN, NB, and TB curves parametrically. In terms curvatures curves, marching scale functions, their partial derivatives, these are determined. Sufficient found maintain provided resulting at value. Finally, some examples provided.
منابع مشابه
Surfaces of Constant Mean Curvature Bounded by Convex Curves
This paper proves that an embedded compact surface in the Euclidean space with constant mean curvature H 6= 0 bounded by a circle of radius 1 and included in a slab of width 1=jHj is a spherical cap. Also, we give partial answers to the problem when a surface with constant mean curvature and planar boundary lies in one of the halfspaces determined by the plane containing the boundary, exactly, ...
متن کاملPoleni Curves on Surfaces of Constant Curvature
In the euclidean plane, a regular curve can be defined through its intrinsic equation which relates its curvature k to the arc length s. Elastic plane curves were determined this way. If k(s) = 2α cosh(αs) , the curve is known by the name “la courbe des forçats”, introduced in 1729 by Giovanni Poleni in relation with the tractrix [9]. The above equation is yet meaningful on a surface if one int...
متن کاملNew Constant Mean Curvature Surfaces
We use the DPW construction [5] to present three new classes of immersed CMC cylinders, each of which includes surfaces with umbilics. The first class consists of cylinders with one end asymptotic to a Delaunay surface. The second class presents surfaces with a closed planar geodesic. In the third class each surface has a closed curve of points with a common tangent plane. An appendix, by the t...
متن کاملCoplanar Constant Mean Curvature Surfaces
We consider constant mean curvature surfaces with finite topology, properly embedded in three-space in the sense of Alexandrov. Such surfaces with three ends and genus zero were constructed and completely classified by the authors [GKS2, GKS1]. Here we extend the arguments to the case of an arbitrary number of ends, under the assumption that the asymptotic axes of the ends lie in a common plane...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of new theory
سال: 2022
ISSN: ['2149-1402']
DOI: https://doi.org/10.53570/jnt.1165809